Alzheimer's disease-like pathology induced by amyloid-β oligomers in nonhuman primates.
نویسندگان
چکیده
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a major medical problem. Here, we have investigated the impact of amyloid-β (Aβ) oligomers, AD-related neurotoxins, in the brains of rats and adult nonhuman primates (cynomolgus macaques). Soluble Aβ oligomers are known to accumulate in the brains of AD patients and correlate with disease-associated cognitive dysfunction. When injected into the lateral ventricle of rats and macaques, Aβ oligomers diffused into the brain and accumulated in several regions associated with memory and cognitive functions. Cardinal features of AD pathology, including synapse loss, tau hyperphosphorylation, astrocyte and microglial activation, were observed in regions of the macaque brain where Aβ oligomers were abundantly detected. Most importantly, oligomer injections induced AD-type neurofibrillary tangle formation in the macaque brain. These outcomes were specifically associated with Aβ oligomers, as fibrillar amyloid deposits were not detected in oligomer-injected brains. Human and macaque brains share significant similarities in terms of overall architecture and functional networks. Thus, generation of a macaque model of AD that links Aβ oligomers to tau and synaptic pathology has the potential to greatly advance our understanding of mechanisms centrally implicated in AD pathogenesis. Furthermore, development of disease-modifying therapeutics for AD has been hampered by the difficulty in translating therapies that work in rodents to humans. This new approach may be a highly relevant nonhuman primate model for testing therapeutic interventions for AD.
منابع مشابه
Detection of Soluble Amyloid-β Oligomers and Insoluble High-Molecular-Weight Particles in CSF: Development of Methods with Potential for Diagnosis and Therapy Monitoring of Alzheimer's Disease
The diagnosis of probable Alzheimer's disease (AD) can be established premortem based on clinical criteria like neuropsychological tests. Post mortem, specific neuropathological changes like amyloid plaques define AD. However, the standard criteria based on medical history and mental status examinations do not take into account the long preclinical features of the disease, and a biomarker for i...
متن کاملScreening seven Iranian medicinal plants for protective effects against β-Amyloid-induced cytotoxicity in cultured cerebellar granule neurons
Background and objectives: Alzheimer's disease (AD) as a neurodegenerative disorder is the most common form of dementia in the elderly. According to the amyloid hypothesis, accumulation of amyloid beta (Aβ) plaques, which are mostly constituted of Aβ peptide aggregates, triggers pathological cascades that lead to neuronal cell death. Thus, modulation of Aβ toxicity is the hopef...
متن کاملNeuronal Cx3cr1 Deficiency Protects against Amyloid β-Induced Neurotoxicity
Cx3cr1, the receptor for the chemokine Cx3cl1 (fractalkine), has been implicated in the progression and severity of Alzheimer's disease-like pathology in mice, but the underlying mechanisms remain unclear. A complicating factor is that Cx3cr1 has been demonstrated in both neurons and microglia. Here, we have dissected the differences between neuronal and microglial Cx3cr1, specifically by compa...
متن کاملInhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-β oligomers
Background: Cholinergic dysfunction is an early feature of Alzheimer’s disease (AD). Results: Soluble oligomers of the amyloid-β peptide (Aβ) bind to cholinergic neurons and inhibit choline acetyl transferase (ChAT) activity, before any cell death or lesion. Conclusion: ChAT inhibiton might impair acetylcholine production and cholinergic function in AD brains. Significance: This novel effect of...
متن کاملHigh molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer's disease.
Alzheimer's disease is the most common form of dementia and the generation of oligomeric species of amyloid-β is causal to the initiation and progression of it. Amyloid-β oligomers bind to the N-terminus of plasma membrane-bound cellular prion protein (PrP(C)) initiating a series of events leading to synaptic degeneration. Composition of bound amyloid-β oligomers, binding regions within PrP(C),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 41 شماره
صفحات -
تاریخ انتشار 2014